什么是气候变化的重要标志_气候变化是由什么变化引起的
1.雪线海拔多少米高
2.区别气候变化与天气变化的主要标准是
3.Science: 太阳辐射在间冰期末期激发的气候突变
4.古气候划分依据与标志
5.某些高山上的积雪为什么常年不化
古气候变化虽很复杂,但它也会在地层中留下痕迹,这些痕迹便成为恢复古气候的基础。判断古气候的标志多种多样,最常用的有岩性、地球化学、矿物学、古生物及古生态、古地磁等特征,下面主要通过研究区上石炭统—二叠系的岩性特征、矿物学特征和地球化学特征等来探讨石炭纪—二叠纪的古气候。
2.4.1.1 岩性组合特征
一般认为,煤层形成于温暖潮湿的气候条件下,而煤层底板的根土岩则是潮湿气候下典型的古土壤层(Cecil,1990)。华北铝土矿是在早古生代碳酸盐岩风化壳的物质基础上,由于晚石炭世湿热气候对粘土物质的铝土化作用,生成三水型铝土矿,并在附近的潟湖和海湾环境中沉积,经多次再沉积和成岩、后生阶段形成现代的铝土矿矿床(吴国炎,1997)。研究区主要发育于上石炭统的铝土质泥岩主要形成于潟湖或潮坪环境,主要为早古生代碳酸盐岩风化壳经搬运沉积所形成,是当时气候炎热潮湿的标志。河南省下二叠统的紫红色及杂色花斑泥岩的矿物学和地球化学特征研究表明,这两种颜色的泥岩并非干旱气候条件下的产物,而是在潮湿气候条件下形成的(尹国勋,1985)。淡水石灰岩和石膏结核以及膏质岩的共同产出,则反映了气候较为炎热干燥(张鹏飞,1990)。古土壤研究表明,不同类型的古土壤也是气候变化的良好标志,如有机土、砖红壤反映湿热或以潮湿为主的气候条件,变性土则反映半湿—半干或半干旱的气候条件,而旱成土则反映了以干旱为主的气候条件(Cecil,1990)。这主要是因为当气候较干旱时,土壤将由于干旱而脱水,使得土壤的盐度增加、石灰累积,氧化性增强,而还原性减弱;当气候转湿,土壤水分增加,元素淋洗加剧,导致元素的迁移与富集,同时土壤将出现沼泽化和潜育化现象(席承藩,1990)。本次研究在石炭系—二叠系中也识别出了7类古土壤,它们在地层中的分布也反映了石炭纪—二叠纪古气候的变化。关于研究区古土壤的详细论述见第六章。
研究区石炭系本溪组底部为一层浅灰色、紫红色鲕状铁质铝土矿,即G 层铝土矿,顶部为一套浅海相石灰岩,并在其下发育一薄煤层。太原组为研究区石炭系—二叠系主要的含煤地层,含煤12层,石灰岩4~6层,以及黑色、深灰色泥岩及粉砂岩,灰色至白色中细砂岩。由于受海侵的影响,气候湿润,地下水水位较高,在河北南部沙坝沟剖面上发育古新成土、古潜育土和古有机土等。
下二叠统山西组由灰色—深灰色泥岩、粉砂岩、泥质粉砂岩及灰白色中细砂岩组成,中下部产煤3~5层,煤层顶板的灰色粉砂岩中含植物化石。中、上部无煤层发育,并在河北南部沙坝沟剖面上发育新成土、潜育土、有机土、氧化土。中二叠统下石盒子组由灰色、灰绿色及紫色花斑状泥岩、粉砂岩、灰绿色灰白色中细砂岩组成,顶部普遍发育一层俗称“桃花泥岩”的紫红色铝土岩,含硅铁质鲕粒及豆粒,下部发育几层厚度较薄的炭质泥岩,含大量植物根化石,个别地区为薄煤层。
上二叠统上石盒子组按岩性特征自下而上可分为四段:①灰绿色、紫灰、杂色花斑泥岩,粉砂岩及灰绿灰白细砂岩互层,在灰色及灰绿色泥岩及粉砂岩中富含植物化石。②巨厚层状白色粗砂岩段,夹灰绿及杂色花斑状粉砂岩。③泥岩粉砂岩段,由暗灰紫色、灰绿色及花色泥岩、铝土质泥岩组成,局部夹蓝绿色或血紫色薄层中砂岩,铝土质泥岩中含锰铁质结核。④由暗紫色、灰绿色泥岩、粉砂岩及灰白色、灰绿色中粗砂岩组成,局部夹紫色薄层砂岩。石千峰组中、下部为酱紫色中细粒钙质砂岩与暗紫色泥质粉砂岩和紫红色泥岩互层,含石膏结核和片状、板状透明石膏晶体。在河北南部沙坝沟剖面上发育旱成土、氧化土、变性土、老成土。
从研究区石炭系—二叠系各地层单元的岩石特征看,晚石炭世到早二叠世早期(山西组沉积早期)气候较为温暖潮湿,早二叠世晚期到中二叠世早期(山西组沉积晚期到下石盒子组沉积期)随着海水的退出,空气湿气减少,仅有少量的炭质泥岩或薄煤层发育,气候为半湿—半干状态,到晚二叠世早期(上石盒子组沉积时期)气候又变得潮湿起来,主要表现在上石盒子组大量发育紫红色、杂色泥岩,它们为半湿半干气候条件下形成的,晚二叠世晚期(石千峰组沉积时期)气候则变得较为炎热、干旱。研究区石炭纪—二叠纪气候呈波动变化,但总体上,则由温湿向干热变化。
2.4.1.2 粘土矿物组合特征
粘土矿物在沉积岩中分布比较普遍,是母岩物质风化作用的产物经搬运沉积形成,气候条件不同,风化产物必然有所差异。一般认为,在潮湿温暖的气候条件下,淋滤作用较强,一些碱金属、碱土金属受淋滤而流失,易形成高岭石。而干冷气候条件下,淋滤作用较弱,不利于碱土元素的淋滤,有利于形成伊利石、绿泥石和蒙脱石(蓝先洪,1990;陈涛,王欢等,2003)。因此,粘土矿物的组合及其质量分数的变化能够反映古气候的变化。
本次研究选择了位于河北省南部临城县竹壁村沙坝沟露头剖面太原组到上石盒子组4层泥岩层的58块泥岩样,在中国石油勘探开发研究院实验中心采用X 射线衍射分析方法,按国家石油天然气行业标准SY/T5163-1995测定了粘土矿物质量分数(原始数据见附表1)。
从分析结果看,粘土矿物主要包括高岭石、伊利石/蒙脱石混层和伊利石,且以高岭石为主。其中,太原组高岭石占67%~90%,平均82%;伊利石/蒙脱石混层占10%~30%,平均16.6%;伊利石占1%~3%,平均2.4%。山西组,高岭石占47%~88%,平均71.8%;伊利石/蒙脱石混层占12%~45%,平均24.9%;伊利石占2%~8%,平均4%。下石盒子组,高岭石占22%~43%,平均30.4%;伊利石/蒙脱石混层占52%~73%;平均64.2%;伊利石占4%~8%,平均5.4%。上石盒子组,高岭石占59%~79%,平均65.4%;伊利石/蒙脱石混层占21%~41%,平均34%;伊利石占1%~5%,平均1.8%(图2.10)。
各时期的粘土矿物组合基本相近,但质量分数变化较大,高岭石质量分数属太原组最高,向上降低,到下石盒子组最低,而到上石盒子组又增高了,伊利石和伊利石/蒙脱石混层质量分数的变化趋势则完全相反。反映了研究区太原组沉积期到上石盒子组沉积期气候的变化,太原组沉积时期风化作用强烈,气候整体上较为温暖潮湿,山西组沉积期风化作用有所减弱,空气湿度降低,到下石盒子组沉积期风化作用最弱,气候变得半湿半干,到上石盒子组沉积期风化作用又增强,气候变得较为温暖潮湿。
图2.10 河北南部沙坝沟剖面粘土矿物质量分数纵向分布特征图Fig.2.10 Clay mineralogy of the Permo—Carboniferous mudstones at Shabagou section in southern Hebei
K—高岭石;I—S—伊利石-蒙皂石混层矿物;I—伊利石
2.4.1.3 地球化学特征
为了对古气候和古环境进行定量分析,对邢台兰羊勘探区2#、3#孔钻孔岩心进行了系统采样,并选取了28个黑色泥岩、粉砂质泥岩和紫红色泥岩样品进行常量元素分析,样品经晾干后,磨至200目的粒度,在IC AP9000SP等离子光量计上测试(原始数据见附表2)。
(1)常量元素纵向分布特征
泥岩为母岩风化的产物以悬浮方式搬运至水盆地,以机械方式沉积而成,其成分以粘土矿物为主,次为陆源碎屑矿物、化学沉淀的非粘土矿物以及有机质(张鹏飞,1990)。其主要化学成分组成由母岩风化产物——粘土矿物的类型所确定,因此,常量元素质量分数的变化能够反映母岩的风化程度强弱。w(SiO2)/w(Al2O3)和w(SiO2)/w(Al2O3+TFe2O3)在风化壳研究中,常用来指示风化淋溶程度的,其值低说明受风化淋溶程度高,而其值高则表明受风化淋溶程度低。一般情况下,在温暖潮湿的气候条件下,岩石化学风化强度较强,而在干冷的气候条件下,化学风化往往较弱(陈旸,陈骏等,2001)。因此,w(SiO2)/w(Al2O3)和w(SiO2)/w(Al2O3+TFe2O3)高时,气候相对干冷,w(SiO2)/w(Al2O3)和w(SiO2)/w(Al2O3+TFe2O3)低时,气候相对温暖潮湿。另外,在风化淋滤过程中,由于Mg2+的活性比Ca2+的活性差,故岩石中w(MgO)/w(CaO)值高指示风化淋滤弱的干冷气候,值低指示风化淋滤强的温湿气候(王随继,黄杏珍等,1997)。
从图2.11 a可以看出SiO2、Al2O3和TFe2O3(总铁)的质量分数总和从太原组到上石盒子组逐渐增大,SiO2质量分数在山西组下部和下石盒子组中上部相对较高,其他位置稍低,且在太原组纵向上无明显变化,在山西组有向上增大的趋势,而下石盒子组则有相反的变化趋势,上石盒子组也是变化不明显;Al2O3质量分数纵向变化较简单,太原组上部到山西组下部,以及上石河子组中上部较低,其他位置则稍高;而TFe2O3质量分数的变化趋势则与Al2O3基本相反,且质量分数较高的位置分别位于太原组上部到山西组下部,以及上石河子组中上部(图2.11a)。从整体上看,碱金属元素质量分数总量在剖面上有从下向上减小的趋势,但各元素的变化特点又有所不同,K2O质量分数有从太原组向上增大,到山西组后又逐渐向上减小的趋势,到上石盒子组质量分数降至最低;Na2O在整个剖面上无明显的变化,CaO、MgO质量分数在太原组较高,而在太原组以上的地层中则较低,且各组大小相近(图2.11b),CaO除了太原组质量分数较高外,其在下石盒子组中也出现一个次高峰。MgO的变化趋势与CaO很相似,所不同的是其在山西组顶部多出现了一个次高峰。
w(SiO2)/w(Al2O3)和w(SiO2)/w(Al2O3+TFe2O3)两条曲线具有较相似的变化趋势,w(SiO2)/w(Al2O3)在太原组中部、山西组中上部和下石盒子组中部值较低,上石盒子组值最高,其他位置次之,w(SiO2)/w(Al2O3+TFe2O3)也是如此。w(CaO)/w(MgO)值则从太原组向上持续增大,到山西组顶达到最大,之后开始逐渐减小,到上石盒子组减到最小(图2.11c),比较清晰地反映了CaO和MgO质量分数在山西组和下石盒子组相差较大,而在太原组和上石盒子组又趋于接近。由于Ca2+化学活性较Mg2+强,在风化过程中易被淋滤。因此,它们之间比值的大小可以较好地反映风化壳的风化程度。
从w(SiO2)/w(Al2O3)、w(SiO2)/w(Al2O3+Fe2O3)、w(CaO)/w(MgO)以及碱金属元素总质量分数在纵向上的
变化趋势可以看出,太原组沉积时期和山西组沉积早期气候较湿热,而山西组沉积晚期到下石盒子组沉积早期气候相对较干冷,下石盒子组沉积晚期到上石盒子组早期气候又变得湿热,在上石盒子组沉积早期末再次出现了短期的干旱后,气候又开始湿热起来。
图2.11 河北南部矿区钻孔2-3#石炭系、二叠系常量元素质量分数纵向分布特征图Fig.2.11 Geochemical characteristics of the Perm o—Carboniferous mudstones in borehole 2-3#in southern Hebei(TFe2O3represents the total percentage of Fe oxides)
(部分数据来源于窦建伟,1997)
(2)烧失量对古气候的反映
有机质一般在潮湿气候下易于形成和保存,而在氧化或干旱的气候环境下较难形成和保存。因此,有机质质量分数的大小在一定程度上也可反映沉积物形成时的气候条件。烧失量是样品经过高温熔融,扣除水分和二氧化碳气体后样品减少量的相对比值。因此,在一定程度上可反映岩石中有机物质的质量分数。从这一点看,烧失量可以间接地反应古气候变化。从图2.11d中可看出,烧失量总体上有由下向上变小的趋势,同时在太原组中部、山西组下部和下石盒子组中上部有高度不同的峰出现,说明研究区石炭纪—二叠纪总体上气候向不利于有机质形成和保存的气候条件演化,但期间也出现过几次有利于有机质形成和保存的气候条件。所反映的气候条件大致为石炭纪—二叠纪总体上气候由潮湿向干旱演变。
(3)Fe3+和Fe2+质量分数对古气候的反映
从上面的常量元素分布特征可以看出,泥岩中总铁质量分数的变化与气候变化具有较好的一致性。高价铁(Fe3+)与低价铁(Fe2+)质量分数测定结果表明,高价铁(Fe3+)质量分数高必然对应于风化程度高,反之则未必(图2.11 a、c、e);低价铁(Fe2+)质量分数也如此。一般认为,低价铁(Fe2+)是还原条件下的产物,而高价铁(Fe3+)为氧化条件下的产物,它们的质量分数可以反映环境氧化还原性的强弱。但氧化条件不仅可以出现在干燥气候条件下,在湿热气候条件下也可以出现较强烈的氧化环境(尹国勋,1985)。因此,高价铁(Fe3+)与低价铁(Fe2+)的质量分数在一定程度上可以反映气候条件,但必须与其他参数结合起来解释,才能获得较可靠的结论。
雪线海拔多少米高
因为这些高山上面的积雪的高度在雪线以上,在雪线以上,气温较低,全年冰雪的补给量大于消融量,形成了常年积雪区;在雪线以下,气温较高,全年冰雪的补给量小于消融量,不能积累多年冰雪,只能是季节性积雪区;在雪线附近,年降雪量等于年消融量,达到动态平衡。
一个地方的雪线位置不是固定不变的。季节变化就能引起雪线的升降:夏季气温较高,雪线上升;冬季气温降低,雪线下降。这种临时界限叫做季节雪线。只有夏季雪线位置比较稳定,每年都恢复到比较固定的高度,由于这个缘故,雪线高度都是在夏季最热月进行测定的。
雪线的分布高度与气温呈正相关,温度高时雪线也高。由于地表气温由低纬度向高纬度递减,使雪线分布高度的总趋势也由低纬度向高纬度递减。例如,雪线高度在热带非洲为4500~5200米,到阿尔卑斯山降至2400~3200米,北极圈内只有100米以下。
扩展资料:
在雪线以下的高山上的积雪在山区冬天降下的积雪没有融化,到春天时这些积雪受太阳辐射而融化形成了内陆河一年中难得一见的汛期。
春暖时节积雪融化成水而汇流成的汛期,叫做春汛。由于积雪的消融需要消耗大量的热。因此,在春汛期间,大地上的气温还不能升高,将出现一段春寒时期。每年夏天我国长江黄河等大河流都要进行防洪抗洪,因为这时是这些大河流的汛期,河道里的水量最大。
但是世界上有些河流,例如苏联的额尔齐斯河、鄂毕河、叶尼塞河、勒拿河以及加拿大平原上的一些河流,它们的主汛期不在夏天而是在春天,春汛是全年最大的汛期,远远超过夏汛的规模。
百度百科——雪花
百度百科——雪线
区别气候变化与天气变化的主要标准是
雪线的海拔高度与气温、降水量和地形条件有关,不是固定的。
1、雪线的海拔高度从低纬向高纬地区降低,反映了气温的影响。在中国西部,从青藏高原、昆仑山往北到天山、阿尔泰山,雪线高度由6000米依次下降到5500米、3900-4100米和2600-2900米。再往北到北极地区,雪线降至海平面。
2、在气温相同的条件下,雪线海拔高度取决于年降水量的多少。在青藏高原,雪线附近的年降水量为500-800毫米,雪线高5500-6000米;阿尔卑斯山脉雪线附近的年降水量达2000毫米,雪线高度仅2700米左右。祁连山东段的年降水量大于西段,雪线由东(4600-4700米)向西(5000米)升高。
3、地形通过影响气温和降水而间接影响雪线海拔高度。北半球在同一山地,南坡的雪线通常比北坡高。但在喜马拉雅山,南、北坡的气温和年降水量相差极大,致使南坡雪线(4500米)比北坡雪线(5900-6000米)低1400-1500米。
雪线高度不仅有空间差异,在时间上也有一定变化。空气变冷、变湿,导致雪线降低;反之,引起雪线上升。这种变化有季节性的,也有多年性的。第四纪时期几次大的气候波动,出现冰期和间冰期,都引起雪线的大幅度升降,古雪线升降是古气候变化的重要标志之一。
Science: 太阳辐射在间冰期末期激发的气候突变
气候变化和天气变化都涉及到大气系统的变化,但它们之间存在本质上的不同。气候变化是长期的、全球性的气候模式的变化,而天气变化则是短期的、局部的气候现象。这篇文章将重点探讨气候变化和天气变化的主要标准的区别。
首先,气候变化和天气变化的时间尺度是不同的。气候变化通常是指数十年到数百年之间的长期变化,通常是由于气候系统中的大规模变化所导致的。天气变化则是小时、天、周等短期的气候现象,通常是由于局部大气系统变化所导致的。例如,某个地区的冬季气温持续下降数十年,这就是气候变化的一种表现;而某一天的降雨量突然增加,这就是天气变化的表现。
其次,气候变化和天气变化的空间尺度也不同。气候变化通常是全球性的,涉及到整个地球的气候系统的变化。例如,全球气温上升、海平面上升等都是气候变化的表现。天气变化则是局部的,通常只涉及到某个地区的气候现象。例如,某个城市的气温、降雨量等都是天气变化的表现。
第三,气候变化和天气变化的影响程度也不同。气候变化的影响是全球性的,涉及到全球生态系统、人类健康等方方面面。例如,全球气温上升导致的海平面上升、极端天气事件增加等都会对人类的生存环境造成重大影响。天气变化的影响则主要是局部的,通常只涉及到某个地区的生态系统、人类健康等方面。
最后,气候变化和天气变化的原因也不同。气候变化通常是由于自然因素和人类活动的双重影响所导致的。例如,太阳辐射、海洋循环等自然因素和人类排放温室气体等人类活动都会影响气候变化。天气变化通常是由于大气系统的变化所导致的,例如,高气压、低气压、冷锋、暖锋等都会导致天气变化。
综上所述,气候变化和天气变化的主要标准是时间尺度、空间尺度、影响程度和原因等方面的差异。了解这些差异有助于我们更好地认识气候变化和天气变化之间的关系,以及它们对人类生存环境的影响。
古气候划分依据与标志
Science: 太阳辐射在间冰期末期激发的气候突变
气候突变是以短时间尺度内发生剧烈的气候变化为标志,是地球科学领域研究的前沿热点问题之一,对现代以及未来全球气候变化具有重要的指示意义。长期以来,大量的古气候地质记录显示在末次冰期发生了广泛的气候突变事件。然而,随着越来越多较长时间尺度、高分辨率地质证据的出现,气候突变事件被发现不仅出现在较冷的冰期,而且也出现在与我们现代气候息息相关的较温暖的间冰期,尤其是在间冰期的末期。然而,是什么因素导致了这种温暖时期的气候突变尚不清楚。
太阳辐射是地球气候系统最重要的外部驱动力之一,对区域和全球气候变化均发挥着至关重要的作用。然而,由地球轨道因素引起的地表所接收的太阳辐射的变化非常缓慢(轨道尺度,万年到十万年级别),使得太阳辐射的影响在气候突变研究中常被忽视。在2021年8月27日发表的Science期刊中(Yin et al., 2021),比利时新鲁汶大学(UCLouvain)的尹秋珍教授、新鲁汶大学和中科院地质与地球物理研究所联合培养的博士生吴志鹏等,通过对过去80万年以来11个间冰期阶段的气候瞬变模拟,发现在每个间冰期即将结束的时候,缓慢变化的太阳辐射都可以在全球范围内引起快速的气候突变事件。具体表现为,当北半球夏季太阳辐射降低到一个临界值时,大西洋经向翻转环流(AMOC)短时间内突然剧烈减弱,随之发生大幅度的振荡(图1)。AMOC的这种变化在北半球引起大范围快速降温事件,同时在不同地区的降雨和植被中也引起快速的波动。他们的研究揭示,这种太阳辐射引起的快速降温事件在北半球高纬度地区短时间内形成大量的积雪,有可能是造成间冰期温暖气候结束、寒冷冰期开始的一个重要因素。这一通过气候模拟获得的间冰期后期突然变冷事件包括它们发生的时间,也得到了格陵兰冰芯记录、伊比利亚边缘海浮游有孔虫壳体δ18O以及其他高分辨率记录的进一步证实。
图1 以末次间冰期为例显示的太阳辐射引起的AMOC和温度的变化(Yin et al., 2021)。(A)四个纬度(55 N、65 N、75 N和85 N)夏半年平均太阳辐射的平均值,夏半年平均太阳辐射是由北半球夏半年总的太阳辐射除以其时间长度所得到;(B)大西洋径向翻转流(AMOC)强度;(C)北大西洋年均海表面温度(SST);(D)为(B)中“B”和“A”点的年均SST差异;(E)为(B)中“B”和“A”点年均表面气温差异
尹秋珍等的模拟结果显示,间冰期末期AMOC的突然减弱受控于北半球高纬度夏季太阳辐射,而温室气体只起到轻微调控太阳辐射的作用。随着太阳辐射的逐渐降低,北极海冰范围逐渐扩张。当太阳辐射降低到一个临界值时,海冰开始覆盖拉布拉多海的对流中心,导致其对流突然关闭,引起AMOC的突然减弱。同时在北欧海北部,海冰与海洋内部温度的相互作用使得那里的对流产生了百年尺度的高振幅振荡,从而引起了AMOC的大幅度振荡。只有当太阳辐射重新升高到一定程度,使得拉布拉多海和北欧海北部不再被海冰覆盖,这种AMOC的大幅振荡才会停止。
由于不同间冰期太阳辐射的纬度和季节性分布不同,太阳辐射的临界值在不同间冰期也会略有不同,但都足够低,且变化范围较小,在352.1 W/m2(MIS-15e)到358.2 W/m2(MIS-7a)之间(图2)。北半球夏季平均太阳辐射的变化同时受控于岁差和斜率,其中岁差的影响更为显著。尹秋珍等的研究表明,太阳辐射临界值的出现需要较大的岁差(北半球夏季在远日点且偏心率较大)以及较小的斜率。他们的研究显示,在过去80万年,这种太阳辐射临界值不仅出现在间冰期,也出现在很多冰期(图2)。但是由于冰期非常不同的气候条件(较大冰盖、较低温室气体等),冰期的太阳辐射临界值很有可能有别于间冰期的临界值。同时,他们的研究还显示,与过去80万年的间冰期相比,我们目前所处的间冰期非常特别,在很长的一段时间内太阳辐射都太高,不足以达到临界值,临界值只出现在5万年后(图2),与Berger and Loutre (2002)通过冰盖模拟得出我们目前所处的间冰期超长、下一个冰期在5万年后才可能出现的结论是一致的
图2 过去80万年至未来10万年太阳辐射的临界值变化(Yin et al., 2021)。红色和蓝色曲线是平均夏半年太阳辐射(定义见图1)。灰色阴影是钻孔U1385底栖有孔虫δ 18 O曲线展示的冰期-间冰期旋回。两条水平虚线分别是太阳辐射的最高和最低临界值(358.2和352.1Wm-2)。黄点表示间冰期末期AMOC突然减弱的时间点
主要参考文献
Berger A, Loutre M F. An exceptionally longinterglacial ahead?[J]. Science, 2002, 297(5585): 1287-1288.
Yin Q Z, Wu Z P, Berger A, et al. Insolationtriggered abrupt weakening of Atlantic circulation at the end of interglacials[J]. Science, 2021, 373: 1035-1040.
某些高山上的积雪为什么常年不化
(一)孢粉组合
植物是环境的产物,它的存在与演替是环境变迁的重要标志,尤其是古气候的冷暖交替,对植物反应最敏感。因此,有的研究者称古植物是地质时代的温度计,这并不过分,结合区内特点,据六个钻孔与天然剖面的孢粉组合面貌,确定了冷期(冰期)植被:孢粉贫乏带、松、桦为主的疏林—草原植被或蒿藜—草原植被;暖期(间冰期)植被:针阔叶混交林植被,含有少量亚热带成分以及针阔叶混交林—草原植被。
区内第四纪孢粉组合由老到新划分为14个组合带,见表3-4。
表3-4 第四纪孢粉组合表
续表
(二)重矿物
根据重矿物抗风化能力,可划分稳定矿物与非稳定矿物。一般说来,稳定矿物通常是温暖湿润气候条件下,化学风化强烈,非稳定矿物在蚀源区就被破坏。这样,地层中稳定矿物含量相对增加,非稳定矿物含量相对减少。反之,非稳定矿物是在寒冷干旱气候条件下,物理风化作用强烈,而化学风化减弱。使其在地层中含量增高,稳定矿物含量相对减少。据此,可以从重矿物组合中获得第四纪古气候信息(表3-4、表3-5)。
区内稳定与非稳定矿物组合见表3-5。
表3-5 稳定矿物与非稳定矿物组合表
注: 平均值
(三)长石
长石抵抗化学风化能力较弱,而在干旱寒冷气候条件下易保存,它对气候变化很敏感,在介质搬运过程中易于磨损。因此,据地层中长石含量的相对消长,可恢复古气候环境与古地理环境。
结合区第四系沉积特点和部分钻孔岩心长石含量分析结果,对于恢复古气候与地理环境作了初步尝试,与其他测试方法所得结果相比较,相近或相似(图3-5)。
图中160m以下长石含量均在25%以上,除气候因素外,表明近源搬运,与岩相古地理相对应。
(四)古温度
近年来,有研究者应用Fe3+/Fe2+比值在地层中的变化,确定当时的古温度(周延兴,1981),这种尝试在三江地区收到较好效果,见2号孔古温度推断图(图3-6)。
图3-5 2号孔长石含量变化图
图3-6 2号孔古温度推断图
高山上积雪终年不化在世界上是很普遍的现象。常年积雪的下界是雪线,也就是开始有常年积雪的那条线,雪线以上年降雪量大于年消融量,降雪逐年加积,形成常年积雪(或称万年积雪),进而变成粒雪和冰川冰,发育冰川。 雪线是一种气候标志线。其分布高度主要决定于气温、降水量和地形条件。高度从低纬向高纬地区降低,反映了气温的影响。地貌和大气环境也对常年积雪形成有影响。
雪线高度在热带非洲为4500~5200米,到阿尔卑斯山降至2400~3200米,北极圈内只有200米以下。
高度从低纬向高纬地区降低,反映了气温的影响。在中国西部,从青藏高原、昆仑山往北到天山、阿尔泰山,雪线高度由6000米依次下降到5500米、3900~4100米和2600~2900米。再往北到北极地区,雪线降至海平面。
在气温相同的条件下,雪线高度取决于年降水量的多少。在青藏高原,雪线附近的年降水量为500~800毫米,雪线高5500~6000米;阿尔卑斯山脉雪线附近的年降水量达2000毫米,雪线高度仅2700米左右。祁连山东段的年降水量大于西段,雪线由东(4600~4700米)向西(5000米)升高。
地形通过影响气温和降水而间接影响雪线高度。北半球在同一山地,南坡的雪线通常比北坡高。但在喜马拉雅山,南、北坡的气温和年降水量相差极大,致使南坡雪线(4500米)比北坡雪线(5900~6000米)低1400~1500米。
雪线高度不仅有空间差异,在时间上也有一定变化。空气变冷、变湿,导致雪线降低;反之,引起雪线上升。这种变化有季节性的,也有多年性的。第四纪时期几次大的气候波动,出现冰期和间冰期,都引起雪线的大幅度升降。故古雪线升降是古气候变化的重要标志之一。