神马天气网

您现在的位置是: 首页 > 天气资讯

文章内容

光伏电站气象数据表_光伏电站气象数据

tamoadmin 2024-08-31
1.气象数据的介绍2.光伏发电的功率怎么计算?3.光伏发电一千瓦一天能发多少度电4.如何获取气象数据5.影响水上光伏电站的水域气候特征有哪些不是,是影响光伏发电

1.气象数据的介绍

2.光伏发电的功率怎么计算?

3.光伏发电一千瓦一天能发多少度电

4.如何获取气象数据

5.影响水上光伏电站的水域气候特征有哪些

光伏电站气象数据表_光伏电站气象数据

不是,是影响光伏发电量的一个因素。

就是光的强度,阴天强度就比较低,发电效率也低。

有太阳的时候光照强度就比较高, 发电量也就多。

影响光伏电站发电量因素还包括:

1、太阳辐射量:太阳能电池组件是将太阳能转化为电能的装置,光照辐射强度直接影响着发电量。各地区的太阳能辐射量数据可以通过NASA气象资料查询网站获取,也可以借助光伏设计软件例如PV-SYS、RETScreen得到。

2、太阳能电池组件的倾斜角度: 从气象站得到的资料,一般为水平面上的太阳辐射量,换算成光伏阵列倾斜面的辐射量,才能进行光伏系统发电量的计算。最佳倾角与项目所在地的纬度有关。大致经验值如下:

A、纬度0°~25°,倾斜角等于纬度

B、纬度26°~40°,倾角等于纬度加5°~10°

C、纬度41°~55°,倾角等于纬度加10°~15°

3、太阳能电池组件转化效率

4、系统损失:和所有产品一样,电站在长达25年的寿命周期中,组件效率、电气元件性能会逐步降低,发电量随之逐年递减。除去这些自然老化的因素之外,还有组件、逆变器的质量问题,线路布局、灰尘、串并联损失、线缆损失等多种因素。 一般光伏电站的财务模型中,系统发电量三年递减约5%,20年后发电量递减到80%。

5、组合损失: 凡是串联就会由于组件的电流差异造成电流损失;并联就会由于组件的电压差异造成电压损失;而组合损失可达到8%以上,中国工程建设标准化协会标准规定小于10%。

提醒: 因此为了减低组合损失,应注意:

1)应该在电站安装前严格挑选电流一致的组件串联。

2)组件的衰减特性尽可能一致。

气象数据的介绍

光伏支架厂家都会收集哪些数据?这些数据又有着哪些强大的数据吸引力? 光伏支架厂家哪家好 ?——诚智泰,带来测量制作光伏支架的重要参数。

1、30年的总辐射量数据

总辐射数据是最根本的数据,也是我们计算发电量的基础。一般我们会关注四个指标:

1)长期变化趋势。光伏电站运营期是25年,业主必须知道当地的太阳能长期来看是什么变化趋势。

计算30年、20年、10年的平均值;若基本相同,则当地就比较稳定,可用30年的数据来计算;若下降趋势明显,则用最近10年的数据计算可能更准确。

2)年际稳定度。我一般会算一下相对偏差。太阳能是分大小年的,而预测的发电量是一个平均值。业主需要了解,项目年发电量的实际值和预测值可能在一个多大的区间内变化。

3)数值大小。在特定的地点,数值大,发电量大;数值小,发电量小。

4)年内稳定度。最小月份与最大月份的比值。通过这个数值,可以判断太阳能在一年之内的变化幅度。

2、直射比

直射比应该是一个非常重要的参数,但由于只有一级站才有直接辐射观测数据,所以这个参数总是被忽略。

光伏发电主要靠直接辐射。同样的辐射量,直射比大的肯定发电量会相对较多。我们固定式支架的倾角,就是根据全年太阳光的入射角设计的。直射比高的地方,方阵倾角会大一些;直射比低的地方,方阵倾角会小一些。

3、30年的日照时数数据

1)反映当地的太阳能情况。辐射量=日照时间×辐照度。所以日照时间长的地方,太阳能会相对较好。

2)进行气候学方法推算。根据当地的经纬度,可以计算出场址的“天文辐射量”、“可照时数”;据实测的日照时数和可照时数,获得日照百分率;利用参考站,算出a、b系数。这样,就可以进行辐射量的推算了!

3)设计。虽然冬至日才是日照时间最短的一天,但如果当地12月份的平均日照时间为7小时,你设计时考虑保证6小时不遮挡,似乎就有点说不过去了。

4、现场实测1年数据

只有在现场自己测了数据,并与气象站的同期和长期数据做了对比以后,分析工作才是扎实的,结果才会是最准确的,业主的心才是踏实的。

5、其他气象数据

温度、风速、冻土深度等,都是设计中重要的气象参数,在此不一一赘述。

通过自然条件下的各项参数测算,获取,使所应用的太阳能光伏支架系统,更加适合于周边环境。更多有关光伏支架问题,请访问://.cngfzj/了解吧。

光伏发电的功率怎么计算?

气象数据网站

NESDIS

://.nesdis.noaa.gov/

NEDIS 是美国NOAA国家卫星资料中心,拥有四套卫星系统:GOES,POES,DMSP,NPOESS。其两颗静止卫星在距地球22,450英里处,追踪灾害性天气和太阳活动。450英里处两颗极轨环绕地球,观测大气风场和温度,为运行预报模式准备,此外还观测海温用于气候研究。

NASA

s://.nasa.gov/

美国航空航天局(英语:National Aeronautics and Space Administration,简称NASA),又称美国宇航局、美国太空总署,是美国联邦的一个行政性科研机构,负责制定、实施美国的太空,并开展航空科学暨太空科学的研究。NASA是世界上最权威的航空航天科研机构,与许多国内及国际上的科研机构分享其研究数据。

欧洲中尺度天气预报中心

://.ecmwf.int

包括34个国家支持的国际性组织,是当今全球独树一帜的国际性天气预报研究和业务机构。其前身为欧洲的一个科学与技术合作项目。15年ECMWF正式成立,总部设在英国的Bracknell。

世界气象组织

://.wmo.ch

世界气象组织(World Meteorological Organization,WMO)是联合国的专门机构之一,是联合国系统有关地球大气现状和特性,它与海洋的相互作用,它产生的气候及由此形成的水的分布方面的权威机构。

中国气象局

s://.cma.gov.cn/

作为全国气象工作的行政管理职能,负责全国气象工作,主要履行公共气象服务以及气象防灾减灾、应对气候变化、开发利用气候、人工影响天气等业务、服务管理等职能。提供权威气象政务信息、天气预报、气象预警、气候变化、防灾减灾、气象科普等权威官方信息。

羲和能源大数据平台

s://xihe-energy/

提供全球任意单点位置或地域平均统计的历史40年至未来7日的11种气象小时级数据,及以此为基准生成的风电、光伏发电功率数据。同时还可以提供260余种更多属性数据。通过对数据的处理分析计算,还提供地区新能源分析、光伏倾角优化、光伏电站系统方案设计及项目建议书一键生成等功能。

国家气象信息中心

://data.cma.cn/

承担着全球观测基础数据和气象产品的收集分发、气象数据加工处理与归档管理、气象数据产品研发与服务、高性能计算调度与并行计算技术支持、气象电子政务技术支持、信息系统基础设施管理与服务、信息网络安全防护及业务运行保障等任务职责。

国家气候中心

://ncc.cma.gov.cn/cn/

国家气候中心承担着国家级气候和气候变化监测、预测、影响评估业务、服务和科研任务,坚持面向国家需求和国际科技前沿,为气象防灾减灾、应对气候变化和生态文明建设提供全方位、多层次、精细化的高质量服务。

气象数据指标

气温:指高地面约1.5-2米处百叶箱中的温度

湿度:指高地面约1.25~2米的空气湿度

气压:指该地区的气压值

降水量:是指从天空降落到地面上的液态或固态(经融化后)水,未经蒸发、渗透、流失,而在水平面上积聚的深度

经向风:指高地面约10m风的经向分量(南风为正)

纬向风:指高地面约10m风的纬向分量(西风为正)

地面风速:指高地面约10米的风速

风向:指风的来向,正北方向为0°,顺时针为正

地表水平辐射:射入地表单位水平表面的太阳辐射总量

直接辐射:指太阳圆面和离太阳最近的区域(以太阳为中心5度的太阳圆面)放射出来的直射太阳辐射

散射辐射:指太阳光在穿过大气层到达地面过程中遇到云、气体分子、尘埃等产生散射,以漫射形式到达地球表面的辐射能

光伏发电一千瓦一天能发多少度电

电力系统是一个功率平衡的等式,而且是随时都保持平衡的等式,就是用电等于发电,如果光伏没有发电的时候,因为与主网相联,如果发电侧没有任何用电设备使用,那么并网线路没有功率,如果有用电设备使用,那么这时功率就会从高压送过来。

当低压侧没有电源,高压断电,那么变压器脱离电源,变压器上什么都没有。当低压侧有电源,高压侧断电(高压开关断开),那么变压器高压侧会有高压电压,但因为高压侧没有负载(高压侧断路)所以没有电流。

光伏发电系统并网有2种形式:

集中式并网和分散式并网。

集中式并网:特点是所发电能被直接输送到大电网,由大电网统一调配向用户供电,与大电网之间的电力交换是单向的。适于大型光伏电站并网,通常离负荷点比较远,荒漠光伏电站用这种方式并网。

分散式并网:又称为分布式光伏发电并网,特点是所发出的电能直接分配到用电负载上,多余或者不足的电力通过联结大电网来调节,与大电网之间的电力交换可能是双向的。适于小规模光伏发电系统,通常城区光伏发电系统用这种方式,特别是于建筑结合的光伏系统。

如何获取气象数据

不同材质的光伏发电发的电数不同,有单晶硅和多晶硅的,发的电量不同,也根据日照情况,正常天气下,单晶硅一千瓦的话大概每天能发4-5度电,多晶硅要低一些。光伏发电是利用半导体界面的光生伏特效应而将光能直接转变为电能的一种技术。

组成

主要由太阳电池板(组件)、控制器和逆变器三大部分组成,主要部件由电子元器件构成。太阳能电池经过串联后进行封装保护可形成大面积的太阳电池组件,再配合上功率控制器等部件就形成了光伏发电装置。

影响水上光伏电站的水域气候特征有哪些

目前最详细的全球气象资料可以追溯到民国时期,从1901-2020年全球逐年/逐月/逐日/逐时气象数据都可以免费获取到。如图中所示,地图上红色密密麻麻的图钉,代表着一个个气象观测站,点击任意一个站点就可以获取该站点的经纬度信息,点击确定即可调取该站点的气象数据。考虑到很多气象站是建了拆、拆了又建,而且早在五六十年代的时候还没有那么多气象站。所以一般来说会先查逐年数据,然后根据该站点能提供的年份去查对应的逐月数据,最后再细化到逐日/逐时数据,根据实际情况而定。

事实上我们更关心的还是气象数据的准确性,所以会发现系统里有不同的数据栏目如:实测数据、网格数据、年鉴资料等。它们的来源不尽相同,实测是NOAA的地面观测资料、网格是NASA的卫星反演产品、年鉴资料由国家统计局颁布相当于一个标准的参照。比如同一个地域的降水量,不同栏目获取到的数据或多或少会存在差异。其实这对数据分析和科研来说是一件好事,多渠道的数据相互比对,可以给我们提供更多的参考依据。

影响水上光伏电站的水域气候因素主要有气温、降水量、风速、湿度、日照时数、雷暴等。

受土地紧缺等因素的影响,水上光伏方兴未艾,水上与陆地在小气候(因下垫面性质不同所造成的小范围内的气候)特征上不同,主要表现为气温、降水量、风速、湿度、日照时数、雷暴等会对光伏电站产生影响。

1、气温——水域气温比陆地低

由于水域比热比陆地大得多,因此当水陆接受到相同的太阳热量时,水体的气温变化必将小于陆地,而且太阳辐射可透入较深的水层,水体的乱流混合作用较强,使得水体吸收到的太阳辐射相对均匀地分布于上下各层次。这就大大缓和了气温的日变化和年变化,使得冬季水体暖于陆地,而夏季凉于陆地。当然水体对气温的影响,因水体的大小、深浅不同而不同,南北方也有差异。下表以洞庭湖和沅江为例。一般湖面比陆面气温低0.6~1.8℃,极端最低差比较大,在5℃以上,极端最高差在1.1℃以上。

还得说明一点,我们没有真正湖面的观测,是用湖附近气象站的资料,若在湖面上观测肯定气温比陆地差异大,估计最高气温低2℃以上。湖边最高气温在40℃左右,湖面可能才38℃,另外,水面气温在25℃以下的时间比陆面要长。

2、降水量——水域降水量比陆地少

因水、陆下垫面热力差异,使气温层结稳定度水域大于陆地,因此水面降水量要小于陆地,夏天水面凉,层结稳定,抑雨作用最强,降水量少最为明显。如洞庭湖年降水量1302.4毫米,比陆地1469.1毫米少了166.7毫米,鄱阳湖年降水量1494.3毫米,比陆地少了30.2毫米。另外,降水日数也比陆地少10天左右。

新安江水库1959年建成,有人专门进行了降水量的研究,库区降水量减少100毫米,水库中心可能减少150毫米以上。

3、风速——水域风速较陆地大

由于水体表面粗糙度小于陆地,无疑摩擦力小于陆地,因此水面风速比陆地大。洞庭湖水域多年平均风速2.9m/s,陆上2.6m/s,相差0.3m/s,大风日数17.1天,陆地8.8天,相差8.3天,最大风速湖面与陆面相差不大。

4、相对湿度——随季节变化

水域相对湿度与陆地比较,冬夏相反,冬季大陆气温低,空气饱和、水汽压小,而蒸发水源仍较充分,因而相对湿度高。夏季大陆气温高于水面,因此,空气远没有低凉水面来得潮湿,水域相对湿度较陆地高。由于湖、陆温差只有1~2℃,所以相对湿度差异也很小,如洞庭湖年平均相对湿度仅相差1%(即湖面比陆面大1%),最大夏季也只相差3%。

5、日照时数——水域日照时数比陆地多

水体由于降水量较陆地少,所以总云量较陆地少,一般总云量少1~2%,夏季少7%左右,所以日照时数较多,平均日照百分率增加3%,夏季增加9%,这样在夏季平均每天水面比陆地增加日数约30分钟到1个小时。

6、雷暴——水域雷暴日数较陆地少

水域较陆地空气稳定,因而雷暴日数较陆地少,一般少2~3天左右。从上面的分析可以得出结论,水域和陆面受下垫面不同的影响,在气候上存在一定的差异,但差异不是特别明显,温度低、日照时数可使得光伏电站在相同条件下,水上发电量高于陆地,而在设计时应考虑风速大等建设条件。

(来源:太阳能光伏网 )